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Abstract. Using discrete-time dynamics of a two neuron network with
recurrent connectivity it is shown that for specific parameter configura-
tions the output signals of neurons can be of almost sinusoidal shape.
These networks live near the Sacker-Neimark bifurcation set, and are
termed SO(2)-networks, because their weight matrices correspond to ro-
tations in the plane. The discretized sinus-shaped waveform is due to the
existence of quasi-periodic attractors. It is shown that the frequency of
the oscillators can be controlled by only one parameter. Signals from the
neurons have a phase shift of π/2 and may be useful for various kinds of
applications; for instance controlling the gait of legged robots.

1 Introduction

Aspects of discrete-time dynamics of two neuron networks with recurrent con-
nectivity have been studied for a long time, e. g. [5], [8], [1], [2], [6]. This is
because they are the simplest neural networks having non-trivial dynamical
properties: for certain parameter domains one finds not only stationary attrac-
tors but oscillations of various periodicity, quasi-periodic and chaotic dynamics.
There are various hysteresis phenomena observable, and different bifurcation
scenarios involved. Most of these complex dynamical properties can be observed
for recurrently coupled inhibitory and excitatory neurons with appropriate self-
connections [6].

Biologically this setup was motivated, among others, by the Wilson-Cowan
model of neural populations [9]. Therefore it is assumed that the analysis of
dynamical properties of 2-neuron networks can help to understand and explain
phenomena observed in artificial recurrent networks in general, and possibly also
those observed in biological neural systems. Furthermore, if one is interested
more in the qualitative dynamical aspects of recurrent neural networks, than it
is appropriate to study discrete-time dynamics, because it reflects all of those
properties, which can be observed also for some (in general higher-dimensional)
continuous-time dynamical systems (probably with time-delays).

The parameterization of these systems (synaptic weights, ”slow” external
inputs) allows to study the appearance and destruction of attractors, the del-
icate balance of stability and instability, features which seem to be crucial for
many of the adaptive and higher-information processing capabilities of biological



systems. A better understanding of these principles, eventually will allow alter-
native design methods, for instance robust neural controllers [3], in comparison
to standard (and often not very efficient) learning algorithms.

Oscillatory dynamics in biological and artificial systems is of general inter-
est, e.g. associated with various kinds of central pattern generators. But often
smooth oscillations are desired, for instance when driving the legs of walking
machines. For discrete-time dynamical systems, the sinusoidal shape of neural
output signals is in general associated with appropriate quasi-periodic attractors.
For 2-dimensional systems quasi-periodic orbits are dense on attractors which
are compact 1-dimensional manifolds homeomorphic to a circle. They do appear
after the system has passed a so-called Neimark-Sacker bifurcation [7]. For this
reason, networks “living” near the Neimark-Sacker bifurcation set have been
studied e.g. in [2], showing that the frequency of such systems can be controlled
by external inputs. Here we choose a special type of 2-neuron network with this
property, the weight matrix w of which corresponds to a rotation in the plane;
i.e. the matrix w is an element in the special orthogonal group SO(2).

If an attractor of a 2-dimensional system is a perfect circle (e.g. harmonic
oscillator), the resulting motion is called harmonic; the neural output then will
correspond to a perfect sine wave. To describe the deviation from this perfect
waveform we introduce a special measure of harmonicity for SO(2)-networks,
and study frequency and harmonicity of the oscillations in dependence of the
rotation angle and a scaling factor.

2 Two neuron networks

In the following the discrete-time dynamics of two neuron networks with stan-
dard additive neurons is discussed. In general it is given by a 6-parameter family
of maps fρ : R

2 → R
2, ρ = (θ1, w12, w11, θ2, w21, w22) ∈ R

6, where θi denotes
the bias term of neuron i, and wij the synaptic weight from neuron j to neuron
i. The output of a neuron is in general given by a sigmoidal transfer function
σ, which here is chosen to be the hyperbolic tangent σ = tanh. The presented
results will also hold for other types of sigmoids. In fact, choosing the standard
sigmoid σ(x) = (1 + e−x)−1 will give networks with topologically equivalent dy-
namics. This is due to the relation tanh(x) = 2·σ(2x)−1 and to a transformation
of the corresponding parameters θiand wij , as was shown in [2], [6].

Furthermore, for convenience we will set θ1 = θ2 = 0 in the following. The
resulting two neuron dynamics is then given by the equations

a1(t + 1) := w11 σ(a1(t)) + w12 σ(a2(t)) ,

a2(t + 1) := w21 σ(a1(t)) + w22 σ(a2(t)) . (1)

where ai denotes the activity of neuron i.
Following the standard procedure, first the stability properties of fixed points

a∗

i =
2

∑

j=1

wij σ(a∗

j ) , i = 1, 2 . (2)



have to be analyzed. Recall that the origin a∗ = (0, 0) is always a fixed point of
the dynamics (1). A fixed point a∗ is asymptotically stable if the eigenvalues of
the Jacobian Dfρ(a

∗) of the dynamics fρ at a∗ all have modulus less than one.
The Jacobian Dfρ(a

∗) of the dynamics (1) is given by

Dfρ(a
∗) =

(

w11σ
′(a∗

1) w12σ
′(a∗

2)
w21σ

′(a∗
1) w22σ

′(a∗
2)

)

. (3)

Stability criteria for stationary states a∗ can be efficiently discussed in terms
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Fig. 1. The stability domain for a fixed point in terms of trace T and determinant D

of the Jacobian Dfρ.

of the trace T and the determinant D of Dfρ(a
∗), which are here given by

T = w11σ
′(a∗

1) + w22σ
′(a∗

2) , D = (w11w22 − w12w21)σ
′(a∗

1)σ
′(a∗

2) . (4)

The eigenvalues of Dfρ(a
∗) are then determined to be

λ1,2 =
1

2
( T ±

√

T 2 − 4D ) .

The domain of stability for a fixed point a∗ in the (T ,D)-plane is given by a
triangle bounded by the three straight lines T −D = 1, T +D = −1, and D = 1
[7]. For instance, along the line T + D = −1 there will be a period-doubling
bifurcation from a fixed point attractor to a period-2 attractor; along the line
D = 1, |T | < 2 there will be Neimark-Sacker bifurcations from a fixed point
attractor to a highly periodic or quasi-periodic attractor [7]. Of course, this last
type of bifurcation is interesting because of the different types of oscillations one
has to expect for configurations where the determinant D at a fixed point a∗ is
larger than one.

Choosing as transfer functions tanh and setting the bias terms θi = 0, i =
1, 2, will result in the fact that the origin a∗ = (0, 0) is always a fixed point for
the dynamics (1). Recall that the derivative of tanh satisfies tanh′(0) = 1. Thus
the Jacobian Dfρ(0) (3) is identical with the weight matrix w = (wij) of the
network.



3 SO(2)-networks

Having identified the Jacobian Dfρ(0) at the origin with the weight matrix
w of the network, it is now easy to construct networks which correspond to
configurations guaranteeing that the origin as a fixed point attractor undergoes
a Neimark-Sacker bifurcation. Such networks have a weight matrix w satisfying
det w = 1. A special type of matrices, satisfying this condition, are the elements
of the special orthogonal group SO(2). They are associated with rotations in the
plane and a standard representation of these elements is given in terms of sin(ϕ)
and cos(ϕ) of the rotation angle ϕ. Thus, convenient weight matrices are of the
form

w = Dfϕ(0) =

(

w11 w12

w21 w22

)

=

(

cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

)

, (5)

and we now can consider the dynamics (1) as a one parameter family of maps
with parameter −π ≤ ϕ ≤ π:

a1(t + 1) := cos(ϕ) tanh(a1(t)) + sin(ϕ) tanh(a2(t)) ,

a2(t + 1) := − sin(ϕ) tanh(a1(t)) + cos(ϕ) tanh(a2(t)) . (6)

Networks with these weight matrices will always have the origin as a non-
hyperbolic fixed point; i.e. the eigenvalues λ1,2 of the Jacobian Dfϕ(0) satisfy
‖λ1,2‖ = 1; they are complex numbers λ1,2 = cos(ϕ) ± i sin(ϕ). Varying ϕ from
−π to π now will keep the determinant D = 1 and at the same time T will
vary between −2 and 2, so that one moves along the line D = 1 in (T ,D)-space
(figure 1).

Because here one wants to obtain almost sinusoidal output signals from the
network, quasi-periodic attractors are preferred. Therefore one has to go slightly
beyond the line D = 1 crossing the Neimark-Sacker bifurcation set. To do this
one may introduce a second parameter α > 1 to obtain D > 1 for the determinant
of the Jacobian Dfρ(0), and the weight matrix of such a network is given by

w = Df(α,ϕ)(0) =

(

w11 w12

w21 w22

)

= α ·
(

cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

)

, (7)

and the eigenvalues λ1,2 of the Jacobian satisfy λ1,2 = α · e±iϕ . For obvious
reasons networks with a weight matrix of the type (7) will be called SO(2)-
networks. The parameter α can also be understood as controlling the slope of
the transfer function tanh; i.e. in equation 1 we may replace the hyperbolic
tangent by the function τα(x) = tanh(α · x); i.e. τ ′

α(x) = α tanh′(α x).
Staying in the parameter domains beyond the Neimark-Sacker bifurcation

set, the frequency of the oscillations will change with varying α and ϕ. As was
discussed in [2], the overall width of possible frequency range increases with
α and depends crucially on ϕ. With α = 1.0 + ε, and ε << 1 amplitudes of
oscillations will be small and the waveform almost sine-shaped. With growing
ε, i.e. growing amplitude the nonlinearities get more pronounced and waveforms
get more and more distorted. This qualitative considerations are supported by
the following numerical analysis.



4 Simulations

To get a first impression about the systems dynamics we depict in figure 2
the (ϕ, α)-parameter domains for higher periodic attractors, showing frequency
locking domains around ϕ = 0.5 π, 1.0 π corresponding to strong resonances
(gray areas) of order 4 and 2, respectively. Higher order resonances, for instance
8 at ϕ = 0.25 π, 0.75 π, are observed for larger α-values. Black domains indicate
quasi-periodic attractors. Setting α = 1.5, this is for instance verified in figure
3, where the largest Liapunov exponent L1 is always zero outside the frequency
locking domains. Also for α = 1.5, the ϕ-dependence of the frequency ω of
oscillations, calculated by the number of zero passages, is depicted in figure 4; it is
almost linear, with frequency locking around 0.5 π and π. Around ϕ = 0 we have
only decoupled or weakly coupled neurons with super-critical self-connections
resulting in four possible fixed point attractors.
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Fig. 2. (ϕ, α)-parameter domains for quasi-periodic attractors (black), showing fre-
quency locking domains around ϕ = 0.25π, 0.5π, 0.75 π and π.

That for small α-values quasi-periodic attractors can be of almost circular
shape is demonstrated in figure 5 for parameter values ϕ = 0.1 π and α =
1.05. Thus the dynamics corresponds to an almost harmonic motion, and output
signals of the network have almost sinusoidal shapes as can be read from figure
5b.

With increasing amplitude of the oscillations, i.e. increasing α, the wave shape
will deviate from that of harmonic oscillation. To describe this the following
measure of harmonicity h for an attractor of the SO(2)-systems is introduced:

h :=
min(A)

max(A)
, A = {‖ a(t) ‖ | tc ≤ t ≤ tc + N } , (8)

where tc denotes the number of convergent iterations, after which the dynamics
is assumed to be near the attractor, and N is the number of counting iterations,
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Fig. 3. Liapunov exponents for varying ϕ and α = 1.5 fixed, showing that quasi-
periodic attractors (L1 = 0) exist everywhere outside the frequency locking domains.
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Fig. 4. Frequency ω depending on the rotation angle 0 < ϕ < π for α = 1.5 fixed.

which should be large enough to represent a full period. Of course, h = 1 de-
scribes a circle, and h = 1/

√
2 = 0.707 a perfect square. Fixing ϕ one observes a

strong dependence of the harmonicity h of attractors on the parameter α, as in
figures 6 and 7; convergent and counting iterations were set to tc = N = 5000.
For an angle ϕ = 0.1 π there is a smaller oscillatory α-regime - as can be seen
from figure 2 - over which harmonicity h is decreasing with increasing α. After
it almost reaches the h = 0.707, it suddenly jumps back to h = 1 when the
stable fixed point appears. At the same time the frequency is decreasing over
this α-interval (figure 6). For a larger angle ϕ = 0.3 π (figure 7) the oscillatory
α-regime is much larger, and harmonicity h is decreasing in a highly nonlinear
fashion with increasing α. The frequency of oscillations stays almost constant
over this α-interval. Again, the decreasing harmonicity corresponds to attractors
changing their shapes in output space from almost circular to almost quadratic.
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Fig. 5. a.) Attractor in (o1, o2)-space, and b) output signals of neurons 1 and 2 for
α = 1.05, ϕ = 0.1 π.
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Fig. 6. Harmonicity h of attractors in dependence of α with ϕ = 0.1 π fixed.

5 Conclusions

It was demonstrated that a specific class of 2-neuron networks, called SO(2)-
networks, can be used as frequency variable oscillators producing almost sinu-
soidal waveforms. The frequency can be controlled over a large domain mainly by
the rotation angle ϕ of of the SO(2) weight matrix, and the waveform, character-
ized by the harmonicity h of the quasi-periodic attractor, can be adjusted mainly
by the parameter α controlling the slope of the transfer function. Of course other
variants of networks can be equally effective (see e.g. [2]), because parameters
only have to guarantee that the determinant of the Jacobian is slightly larger
than one. Therefore a convenient parameter may be also introduced as a mod-
ulation factor on one of the networks synaptic weights.

One possible application of these frequency variable oscillators is in the field
of neural control for walking machines [4]. The described oscillators can control
the type of walking and the walking speed of legged robots simply by using
sensor inputs of the robot for weight or slope modulation. In addition, sensor
inputs driving the neural system to and fro over the Neimark-Sacker bifurcation
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Fig. 7. Harmonicity h of attractors in dependence of α with ϕ = 0.3 π fixed.

set will switch on and off the oscillations. Operating the neural oscillator near
the bifurcation set, i.e. α = 1+ε, ε << 1, will cause long transients, and thus will
result in a smooth type of switching. As an example, this will be demonstrated
for a quadruped robot elsewhere.
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